Mathematics Department

Welcome to Department of Mathematics.

 Establishment of department of Mathematics took place in the year 1960. Since 1960, the department continues to impart mathematical skill and analytical thinking to all engineering graduates of this institution. our focus is primarily on teaching and equally on research also. The departmnet is equipped with 14 dedicated faculties with 06 Ph.D's.

 

Head of the Department

Dr. M K Partha

Professor

 

Vision

  •  To be a master degree awarding department in applied mathematics.

Mission

  • Update faculty members with advances   in mathematics of physics   and allied subjects.
  • Introduce computer based tools  and techniques for modeling and solving mathematical connected physics problems.
Sl No Name & Designation Members
1 L.S Bharatha Narayana (Faculty ID: 1-497429415)
Associate Profesor
M.Sc
image.jpg
2 T Revanna (Faculty ID: 1-497429663)
Associate Profesor
M.Sc , B.Ed
image.jpg
3 Dr. M.K Partha (Faculty ID: 1-497429667)
Professor & Head
M.Sc , Ph.D
image.jpg
4 T Mohana (Faculty ID: 1-497429731)
Associate Professor
M.sc
image.jpg
5 Dr. Kalavathi G K (Faculty ID: 1-762698500)
Associate Professor
M. Sc., M. Phil., Ph. D.
image.jpg
6 Chaithra C.M (Faculty ID: 1-3551674573)
Assistant Professor
M.Sc , B.Ed
image.jpg
7 Dr. Roopa G.S. (Faculty ID: 1-4191568003)
Assistant Professor
M.sc.,B.Ed., Ph.D
image.jpg
8 Dr. Shashikumar N S (Faculty ID: 1-7504432446)
Assistant Professor
M. Sc., Ph. D
image.jpg
9 Adithya G N (Faculty ID: 1-7504432206)
Assistant Professor
M.Sc., (Ph.D.), KSET
image.jpg
10 Pradyumna R (Faculty ID: 1-9527043242)
Assistant professor
M.Sc., K.Set
image.jpg
11 Niharika Hegde M.(Faculty ID: 1-9324466710)
Assistant professor
M.Sc.
image.jpg
12 Shwetha R (Faculty ID: )
Assistant professor
MSc.
image.jpg
13 Deekshitha K V
Assistant Professor
M. Sc., KSET
image.jpg
14 Kruthika .N
Assistance Professor
MSc, KSET
image.jpg
15 Chandhini K S
Assistance Professor
Msc
image.jpg
Sl No Name & Designation Members
Data not found !

Undergoing Project:

    5 Lakh amount is sanctioned by VGST, Government of Karnataka, in the year 2017-18 for the topic “A Distributed Parameter Electromechanical model for Cantilevered Piezoelectric Energy Harvester with shape memory alloy”.

1.   Kalavathi G.K., K. Gururajan, Dinesh P.A., Gurubasavaraj G., Effect of surface roughness in a Narrow porous journal bearing with a heterogeneous slip/no-slip surface, International journal of Scientific and Innovative Mathematical Research, 2(12) (2014), 944-959.

2.   Kalavathi G.K., Dinesh P.A., K. Gururajan,  Influence of Roughness on Porous Finite Journal Bearing with Heterogeneous slip/ no-slip surface. Elsevier - Tribology International. 2016; 102: 174-181.

3.   Kalavathi G.K., Dinesh P.A., K. Gururajan, Numerical Study of Effect of Roughness on Porous Long Journal Bearing with Heterogeneous Surface, Journal of Nigerian Mathematical Society. 2016; 35: 468 – 487.

4.   Kalavathi G.K., Dinesh P.A., K. Gururajan, Numerical Study of Magnetic Field on Rough Porous Narrow Journal Bearing with Heterogeneous Surface, Materials Today: Proceedings 4.  2017; 10539–10543.

5.   Yuvaraja B.K., and Kalavathi G.K., Dinesh P.A, Gururajan K., Effects of Magneto Hydrodynamic Fluids in a narrow Porous rough Journal Bearing, International journal of Scientific and Innovative Mathematical Research, 6 (2018) 7-15.

6.   Nagraj C, Dinesh P.A., Kalavathi G.K., Combined effect of electric field and magnetic field on electrohydrodynamic dispersion of macromolecular components in biological bearing, Deffect and Diffusion Forum, 2018; 388: 361-377.

7.   M. Senthilkumar, M. G. Vasundhara, G. K. Kalavathi, Electromechanical analytical model of shape memory alloy based tunable cantilevered piezoelectric energy harvester, Springer- Int J Mech Mater Des https://doi.org/10.1007/s10999-018-9413-x, Aug 2018.

8.   M. G. Vasundhara,  M. Senthilkumar,  G. K. Kalavathi, A distributed parametric model of Brinson shape memory alloy based resonant frequency tunable cantilevered PZT energy harvester, Springer- Int J Mech Mater Des https://doi.org/10.1007/s10999-018-9429-2, Nov 2018.

9.   M. G. Vasundhara,  M. Senthilkumar,  G. K. Kalavathi, A Distributed Parametric Model of Shape Memory Alloy based Resonant Frequency Tunable Cantilevered PZT Energy Harvester with tip mass, ISSS Journal of Micro and Smart Systems, Springer, https://doi.org/10.1007/s41683-019-00034-0, April 2019.

 

10. Second law analysis of MHD third-grade fluid flow through the microchannel. Pramana (Springer)95(1), 1-10 (2021). (Scopus/SCI) 

11. Heat transfer optimization of hybrid nanomaterial using modified Buongiorno model: A sensitivity analysis. International Journal of Heat and Mass Transfer (Elsevier)171, 121081 (2021). (Scopus/SCI) 

12. Thermal analysis of MHD Powell–Eyring fluid flow through a vertical microchannel. International Journal of Ambient Energy (Taylor & Francis), 1-9 (2021). (Scopus)
13. Thermal and entropy generation of non-Newtonian magneto-Carreau fluid flow in microchannel. Journal of Thermal Analysis and Calorimetry (Springer)143(3), 2717-2727 (2021). (Scopus/SCI) 

14. Second Law Analysis of MHD Micropolar Fluid Flow through a Porous Microchannel with Multiple Slip and Convective Boundary Conditions. In Defect and Diffusion Forum( Trans Tech) , 409,  123-141 (2021). (Scopus)

15. Performance of second law in Carreau fluid flow by an inclined microchannel with radiative heated convective condition. International Communications in Heat and Mass Transfer (Elsevier)117, 104761 (2020). (Scopus/SCI) 

     16. Impact of nonlinear thermal radiation on magnetohydrodynamic three dimensional boundary layer flow of Jeffrey nanofluid over a nonlinearly permeable stretching sheet. Physica A: Statistical Mechanics and its Applications (Elsevier)549, 124051 (2020).   (Scopus/SCI) 

     17. Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk. Journal of Thermal Analysis and Calorimetry (Springer), 1-9 (2020).  (Scopus/SCI) 

   18. Finite element analysis of micropolar nanofluid flow through an inclined microchannel with thermal radiation. Multidiscipline Modeling in Materials and Structures(Emerald Publishing Limited) (2020).(Scopus)

    19. Magnetohydrodynamic flow of dusty fluid over Riga plate with deforming isothermal surfaces with convective boundary condition. Songklanakarin J. Sci. Technol42(3), 487-495 (2020).

20. Second law Analysis of Powell-Eyring fluid flow through an inclined microchannel with thermal radiation, Physica Scripta (IOP Publishing Limited), https://iopscience.iop.org/article/10.1088/1402-4896/ab32b7 (2019). (Scopus/SCI) 

21. Heat transfer and Entropy generation analysis of non-Newtonian fluid flow through a vertical microchannel with Convective boundary condition, Applied mathematics and mechanics-English Edition (Springer), https://doi.org/10.1007/s10483-019-2516-9 (2019). (Scopus/SCI) 

22. Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering (SAGE), https://doi.org/10.1177/0954408919849987 (2019). (Scopus/SCI) 

23. Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with nonlinear radiative heat. Journal of Computational Design and Engineering (Elsevier), https://doi.org/10.1016/j.jcde.2019.04.005 (2019). (Scopus)

24. MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Physica Scripta (IOP Publishing Limited), 94(8) (2019). (Scopus/SCI) 

25. Brinkman Forchheimer slip flow subject to exponential space and thermal dependent heat source in a microchannel utilizing SWCNT and MWCNT nanoliquids. Heat Transfer Asian Research (Wiley), https://doi.org/10.1002/htj.21452 (2019). (Scopus)

26. Thermodynamics Analysis of a Casson Nanofluid Flow Through a Porous Microchannel in the Presence of Hydrodynamic Slip: A Model of Solar Radiation. Journal of Nanofluids (American Scientific Publishers), 8(1), 63-72 (2018). (Scopus)

27. Entropy generation analysis of magneto nanoliquids embedded with aluminium and titanium alloy nanoparticles in microchannel with partial slip and convective conditions. International journal of numerical methods for heat and fluid flow (Emerald Publishing Limited), https://doi.org/10.1108/HFF-06-2018-0301 (2018). (Scopus/SCI) 

28. Three dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions. Journal of Computational and Applied Research in Mechanical Engineering (JCARME), 8(1), 25-38 (2018). (Scopus)

29. Brinkman-Forchheimer flow of SWCNT  and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects. Multidiscipline Modeling in Materials and Structures (Emerald Publishing Limited), 14(4), 769-786 (2018). (Scopus)

30. Thermodynamics Analysis of MHD Casson Fluid Slip Flow in a Porous Microchannel with Thermal Radiation. Diffusion Foundations (Trans Tech Publications), 16, 120-139 (2018).

31. Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects. Results in Physics (Elsevier), 9, 78-85 (2018). (Scopus/SCI) 

32.  MHD Nanofluid Flow Past a Rotating Disk with Thermal Radiation in the Presence of Aluminum and Titanium Alloy Nanoparticles. Defect and Diffusion Forum (Trans Tech Publications), 384, 69-79 (2018). (Scopus)

33.  Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source. Nuclear Engineering and Technology (Elsevier), 49(8), 1660-1668 (2017). (Scopus/SCI) 

34. Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source. Physica E: Low-dimensional Systems and Nanostructures (Elsevier), 94, 25-30 (2017). (Scopus/SCI) 

35. Effects of nonlinear thermal radiation and second order slip on Casson nanofluid flow between parallel plates. Defect and Diffusion Forum (Trans Tech Publications), 377, 84-94 (2017). (Scopus)

36.  Boundary layer flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium. Nonlinear Engineering (De Gruyter), 6(3), 179-190 (2017). (Scopus)

37.  Boundary Layer Flow and Heat Transfer of Nanofluid with Fluid Particle Suspension Over a Nonlinear Stretching Sheet in the Presence of Thermal Radiation. Journal of Nanofluids (American Scientific Publishers), 6(3), 487-495 (2017). (Scopus)

 

38.  Boundary layer flow of dusty fluid over a radiating stretching surface embedded in a thermally stratified porous medium in the presence of uniform heat source. Nonlinear Engineering (De Gruyter), 6(1), 31-41 (2017). (Scopus)

 39.  S.Sindhu and B.J.Gireesha, Transport of magnetohydrodynamic nanofluid in a microchannel based on mixture theory with particle shape effect, Heat Transfer-Asian Research, (Wiley), DOI: 10.1002/htj.21891, 2020.

40. . S. Sindhu and B.J. Gireesha, Entropy generation analysis of hybrid nanofluid in a microchannel with slip flow, convective boundary and nonlinear heat flux, International Journal of Numerical Methods for Heat & Fluid Flow, (Emerald), (Scopus), DOI: https://doi.org/10.1108/HFF-02-2020-0096, 2020.

41.  S. Sindhu, B.J. Gireesha and D.D. Ganji, Simulation of Cu-ALOOH hybrid nanofluid in a microchannel heat sink cooled by dint of porous media approach, Case Studies in Thermal Engineering, (Elsevier), DOI: https://doi.org/10.1016/j.csite.2020.100723, (2020), 2020.

42. B.J. Gireesha and S. Sindhu, MHD natural convection flow of Casson fluid in an annular microchannel containing porous medium with heat generation/absorption, Nonlinear Engineering, (De Gruyter), Vol. 9, pp. 223-232, 2020.

43.  S. Sindhu and B.J. Gireesha, Analysis of second law on Eyring-Powell nanoliquid flow in a vertical microchannel considering magnetic field and convective boundary, Heat Transfer-Asian Research, (Wiley), DOI: https://doi.org/10.1002/htj.21878, 2020.

44.  B.J. Gireesha, S. Sindhu, G. Sowmya and A. Felicita, Magnetohydrodynamic flow of Williamson fluid in a microchannel for both horizontal and inclined locus with wall shear properties, Heat Transfer-Asian Research, (Wiley), DOI: 10.1002/htj.21937, 2020.

45.  S. Sindhu and B.J. Gireesha, Heat and mass stratification of chemically reactive hyperbolic tangent fluid in a microchannel, Heat Transfer-Asian Research, (Wiley), DOI: 10.1002/htj.21936, 2020.

46.  S. Sindhu, B.J. Gireesha and G. Sowmya, Impact of Hall Effect, nonlinear radiation and heat source on MHD Couette-Poiseuille flow of nanoliquid through a rotating channel, Multidiscipline Modeling in Materials and Structures, (Emerald), DOI; https://doi.org/10.1108/MMMS-12-2019-0220, 2020.

47.  S. Sindhu and B.J. Gireesha, Flow of colloidal suspension and irreversibility analysis with aggregation kinematics of nanoparticles in a microchannel, Applied Mathematics and Mechanics, 41, 1671–1684, 2020.

48.  S. Sindhu and B.J. Gireesha, Irreversibility analysis of nanofluid flow in a vertical microchannel with the influence of particle shape, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, DOI:  https://doi.org/10.1177/0954408920958110, 2020.

49.  S. Sindhu and B.J. Gireesha, Irreversibility analysis of nanofluid flow in a vertical microchannel with the influence of particle shape, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, DOI:  https://doi.org/10.1177/0954408920958110, 2020.

50.  B.J. Gireesha and S. Sindhu, Entropy generation analysis of nanoliquid flow through microchannel considering heat source and different shapes of nanoparticle with tip mass, International Journal of Numerical Methods for Heat & Fluid Flow (Emerald), Vol. 30, No. 3, pp. 1457-1477, 2019.

51.  B.J. Gireesha and S. Sindhu, Entropy generation analysis of Casson fluid flow through a vertical microchannel under combined effect of viscous dissipation, joule heating, hall effect and thermal radiation, Multidiscipline Modeling in Materials and Structures, (Emerald), Vol. 16, No. 4, pp. 713-730, 2019.

52.  S. Sindhu, B.J. Gireesha and G. Sowmya, Entropy generation analysis of multi-walled carbon nanotube dispersed nanoliquid in the presence of heat source through a vertical microchannel, International Journal of Numerical Methods for Heat & Fluid Flow, (Emerald), DOI: https://doi.org/10.1108/HFF-10-2019-0754, 2019.

  54.  Kamashevaran peri, Partha M K, PVSN Murthy, Prescious Sibhanda -Thermophoretic  and non linear convection in a non darcy porous medium, ASME-Journal of heat transfer, 136-4, 2014. 

55.    Ravi kumar S, T. Ranga swamy, Partha M.K., Thermophoretic effects on heat and mass transfer    in a non-darcy porous medium , Int. J.  Mechanical and production engineering , 1, 2092-2300, 2013 

56.    Partha, M.K., Non linear convection in a non darcy porous medium , applied mathematics and  mechanics , 31-565-574, 2010.

57.    Partha, M.K.- suction  injection effects on thermophopresis  particl;e deposition  in a non darcy porous medium under the influence of Soret, Dufour effect- int. J. heat and mass transfer, 52-1971-1979, 2009

58.  Partha, M.K.- Thermophoresis under the influence of Soret, Dufour effect in a non Darcy porous medium.   - Heat and mass transfer, 44,969-977 -2008

59.    Partha, M.K., PVSN murthy,  Rajasekhar Soret and Dufour effects in a Non –Darcy porous medium  -ASME- Journal of heat transfer. June 2006, vol 128, pp 605-610.

60.    Partha, M.K., PVSN murthy,  Rajasekhar- Viscous flow past a porous sphereical void  –Effect of stress jump boundary condition. Accepted in journal of porous media , 9(8), 745-767- 2006

61.    Partha, M.K., PVSN murthy,  Rajasekhar- Mixed convection heat and mass transfer  with thermal radiation in a  non-Darcy porous medium. Journal of porous media, vol 8, 1-9,  2005

62.    Partha, M.K., PVSN murthy,  Rajasekhar- Viscous flow past a porous spherical shell – Effect of stress jump boundary  condition-ASCE-Journal of engineering mechanics. 2005, vol 131, pp  1291-1301

63.    Partha, M.K., PVSN murthy,  Rajasekhar-  Effect of viscous  dissipation  on mixed convection  heat and mass transfer from an exponentially stretching surface  -  Heat and Mass transfer. Vol. 41, 2005, pp 360-366

64. K. Gururajan and J. Prakash, “Effect of velocity slip on a narrow porous journal bearing, In proceedings of institution of mechanical Engineers”, Part J: J Eng. Tribol., Vol. 217(1), pp. 59-70, 2003. 

65. K. Gururajan and J. Prakash, “Roughness effects in a narrow porous journal bearing with arbitrary porous wall thickness”, International Journal of Mechanical SciencesVol. 44 (5), pp. 1003-1016, 2002. 

66. Gururajan K., and Prakash J., “Effect of surface roughness in a narrow porous journal bearing”, ASME Journal of Tribology, Vol. 122, pp. 472-475, 2000.

67. J. Prakash and K. Gururajan, “Effect of Velocity Slip in an Infinitely Long Rough Porous Journal Bearing”, Tribology Transactions, Vol. 42(3), pp. 661-667, 1999.

  68. K.Gururajan and J.Prakash,“Surface Roughness Effects in Infinitely Long Porous Journal Bearings”, J. Tribol., Vol. 121(1), pp. 139-147, 1999                                                                               

69. G.S.Roopa, B.J.Gireesha & C.S.Bagewadi, “Numerical investigation of mixed convection  boundary layer flow of a dusty fluid over an vertical surface with radiation” ‘Afrika Matematika (Springer publications)’ Vol. 24, (2013) Pp.487-502

 

70.   B.J.Gireesha, G.S.Roopa & C.S.Bagewadi, “Effect of viscous dissipation and heat source on flow and heat transfer of dusty fluid over unsteady stretching sheet” ‘Applied Mathematics and Mechanics (English Edition) (Springer publications)’ Vol. 33, No. 8 (2012) Pp.1001-1014.

71.   B.J.Gireesha, G.S.Roopa, H.J.Lokesh and C.S.Bagewadi, “MHD Flow and Heat Transferof a Dusty Fluid over a Stretching Sheet,” ‘International Journal of Physical and Mathematical Sciences’ Vol. 3, No. 1 (2012) Pp.171-182.

72.  C.S.Bagewadi, B.J.Gireesha, Mahesha and G.S.Roopa, “Effect of Radiation on Hydromagnetic flow and Heat Transfer of a Dusty fluid between Two Parallel plates,” ‘International Journal of Physical and Mathematical Sciences’ Vol. 3, No. 1 (2012) Pp.47-65.

73.    G.S.Roopa, B.J.Gireesha & C.S.Bagewadi, “Effect of viscous dissipation on MHD flow    and heat transfer of a dusty fluid over an unsteady stretching sheet” ‘International Journal         of Mathematical Archive’ Vol. 2, No. 11 (2011) Pp. 2229-2240.

74.  G.S.Roopa, B.J.Gireesha and C.S.Bagewadi, “Unsteady Flow and Heat Transfer of a

       Dusty Fluid between Two Parallel Plates,” ‘International Journal of Computational Science and Mathematics’ Vol. 3, No. 4 (2011) Pp. 421-433.

75.  B.J.Gireesha, G.S.Roopa and C.S.Bagewadi, “Boundary Layer Flow of an Unsteady Dusty Fluid and Heat Transfer over a Stretching Sheet with non-uniform Heat Source/Sink,” ‘Engineering (Scientific Research)’ Vol. 3, No. 7 (2011) Pp.726-735.

76.  B.J.Gireesha, G.S.Roopa and C.S.Bagewadi, “Unsteady Flow and Heat Transfer of a Dusty Fluid through a Rectangular Channel,” ‘Mathematical Problems in Engineering (Hindawi Publishing Corporation)’ Vol. 2010, (2010) 17 pages.

77. Ramesh, G. K., Roopa, G. S., Rauf, A., Shehzad, S. A., & Abbasi, F. M. (2021). Time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction and slip effects. International Communications in Heat and Mass Transfer126, 105470.

78. Ramesh, G. K., Manjunatha, S., Roopa, G. S., & Chamkha, A. J. (2020). Hybrid (ND-Co 3 O 4/EG) nanoliquid through a permeable cylinder under homogeneous-heterogeneous reactions and slip effects. Journal of Thermal Analysis and Calorimetry, 1-11.

79. Ramesh, G. K., Roopa, G. S., Shehzad, S., & Khan, S. U. (2020). Interaction of Al2O3-Ag and Al2O3-Cu hybrid nanoparticles with water on convectively heated moving material. Multidiscipline Modeling in Materials and Structures.

80. Do, Y., Ramesh, G. K., Roopa, G. S., & Sankar, M. (2019). Navier’s slip condition on time dependent Darcy-Forchheimer nanofluid using spectral relaxation method. Journal of Central South University26(7), 2000-2010.

81. Ramesh, G. K., Roopa, G. S., Gireesha, B. J., Shehzad, S. A., & Abbasi, F. M. (2017). An electro-magneto-hydrodynamic flow Maxwell nanoliquid past a Riga plate: a numerical study. Journal of the Brazilian Society of Mechanical Sciences and Engineering39(11), 4547-4554.

82.  DO, Y., RAMESH, G., ROOPA, G., & SANKAR, M. (2019).  Darcy-Forchheimer  Navier . Journal of Central South University7.

Nil

Students Enrolled for Ph. D degree:

Mr. M Somashekhar is perusing Ph.D. under the supervision of Dr. Kalavathi G K, Associate Professor, Department of Mathematics, MCE, Hassan at VTU Belagavi with USN: 4MC19PMA02.

Undergoing Project:

5 Lakh amount is sanctioned to Dr. Kalavathi G K, Associate Professor, Department of Mathematics, MCE, Hassan from VGST, Government of Karnataka in the year 2017-18 for the topic “A Distributed Parameter Electromechanical model for Cantilevered Piezoelectric Energy Harvester with shape memory alloy”  

Lab Facilities

Nil

Contact

Dr. M.K Partha (Faculty ID: 1-497429667)

Professor & Head

M.Sc , Ph.D

 6360459806

 Email: mkp@mcehassan.ac.in