PLCs AND DCS IN
PROCESS CONTROLAUTOMATION

Course Code: 20EI701

Sharath H K, m.Tech.

Assistant Professor
Dept. of Mechanical Engineering,
MCE, Hassan.

PLC Instructions &
Introduction to SCADA & DCS

Module -4

Contents

Module -4

PLC Instructions continued: Comparison and Data handling Instructions:
comparison, Data handling and Logical Instructions. Sequencer
Instructions: The Sequencer Instructions, Programming the output.
Sequencer Instructions. Construction of Ladder diagram for analytical
problems.

Introduction to SCADA and DCS: Supervisory Control and data Acquisition
System: Channel Scanning, Data Processing, distributed SCADA Structure;
Star and daisy Chain configuration. Distributed Control Systems:
Distributed dedicated, Centralized and decentralized Computer Control
Concept. Functional Requirements of DCS, System architecture, Functional
Levels of DCS, Sub Systems; Presentation and Monitoring Devices,
Communication links in DCS.

COMPARISON INSTRUCTIONS

The Equal Instruction (EQU)

ne Not Equal Instruction (NEQ)

ne Less Than Instruction (LES)

ne Less Than or Equal Instruction (LEQ)

ne Greater Than Instruction (GRT)

o Uk w e
- 4 =4 =4 -

ne Greater Than or Equal Instruction (GEQ)

The Equal Instruction (EQU)

Figure 17-1 An equal instruction controlling OTE instruction address Q:2/6.

" O]

- Equal

1 Source A N7:0

| 12<
Source B 12 |

| 12< |

0:2

—

|
!

(
{ —
1746-OB16

The Not Equal Instruction (NEQ)

; ; :-n controlling OTE instruction address O:2/7.
| input instruction
7.2 Not equa

Cntwa 0:2

" Not Equal | {
— Source A N7:0 [7

2 3 1746-OB16

" Source B 12

The Less Than Instruction (LES)

LES 02
Less Than (A<B) Va
Source A N7:1 \)—
7< 8
Source B 12 1746-0OB16
12<

Figure 17-3 The less than instruction tests to see if the value in source A is less than the
value stored in or addressed as source B.

The Less Than or Equal Instruction (LEQ)

LEQ B8
Less Than or Eql (A<=B '
Source A N?-(g - ==
' 10
12
Source B 12< 1746-0B16
12<

Figure 17-4 Less than or equal instruction tests to see if A < B.

B if Then the Instruction Will Be Example

b’—iA is equal to B (A = B) True FA =12and B =12

r—FA is greater than B (A > B) False If A is 13 or greater, this rung will be false.J
B A is less than B (A < B) True If Ais 11 or less, this rung will be true. _j

Figure 17-5 Table showing A and B relationship for A < B logic.

The Greater Than Instruction (GRT)

| Greater Than > J
Source A N7:2 ()__
. 12« 9
- Source B 10 | 1746-OB16
10<

Figure 17-6 The greater than instruction tests to see if A > B.

The Greater Than or Equal Instruction (GEQ)

—— GEQ~ 3 0:2
! Grtr Than or qu (A>_B) I Wi
Source A N7.0 \)
! 12< | 11
Source B 12 ; 1746-OB16
12<

Figure 17-8 Greater than or equal instruction tests to see if A = B.

If Then the Instruction Will Be Example
A is equal to B (A = B) True IfA=12and B = 12 4
A is greater than B (A > B) True If Ais 12 or greater, this rung will be true. |
A is less than B (A < B) False If A'is 11 or less, this rung will be false.

Figure 17-9 Table showing A and B relationship for A = B logic.

10

DATA HANDLING INSTRUCTIONS

1. The Move Instruction

The Masked Move Instruction (MVM)
Converting from BCD to an Integer (FRD)
Converting an Integer to BCD (TOD)

A S

The Copy Instruction

11

The Move Instruction

Figure 17-1
the specified source t

B3:0 B3:0
1[B B
1L | OSR |
5 0

o the specified destination.

| ——

T —

7<

Move
Source N7:1
Dest N12:15

O<

e

0 A move instruction, when true, will move a copy of the information stored in

12

Selector Switch #1
: - MOV -
I'1 : B3:.0 "
ove
J 1 {OSR jj Source 6
1 4 1 6<
1746-1A8 . Dest N7:10
0<
Selector Switch #2 R P
33 | B3:0 i |
1] —{osR]| e —
1| L] Source 12 |
2 ‘— 5 12<
Dest N7:10
1746-1A8 | o
Selector Switch #3 | o TR ez e
I _I—-BS'O n . Move
1] LOSR J . Source 24
1L 6 ' 24<
3 . Dest N7:10
1746-1A8 ' 0<

13

The Masked Move Instruction (MVM)

B3.0s5 B3.00 ——MVM ——
—f—JosR Masked Move & .

Source B3:12 |

0101011101001 11<

Mask 00FFh |

255< |

Dest B1225 |

mommlqnu-cjl

Figure 17-12 RSLogix 500 software masked move instruction.

Source B3:12 0101 1011 1010 0111 - — 1010 1010 1010 1010
Mask = 00FF 0000 0000 1111 1111 Mask OOFF: 0000 0000 1111 1111
Destination B12:25 N0 NN NN NN Destination: 0000 0000 1010 1010

Figure 17-13 Source data moved through a mask to the destination.

14

Converting from BCD to an Integer (FRD)

I:3 B3:0 s FiAD i |

] E ["osR | From BCD L
1L L A |
0 0 l Source T:1.0 |
1746-1A16 0000h<|
Dest T4:0.PRE |
b 100<]

Figure 17-15 FRD instruction converting BCD input data for use in a timer preset value.

Converting an Integer to BCD (TOD)

x2 - o
g I » {osn } To BCD
7 0 Source C5:0.ACC
1746-1A16 0<
Dest 06.0
0000h<

Figure 17-16 TOD instruction converting an integer value, counter file five, counter zero’s
accumulated value to BCD.

The Copy Instruction

...... SUNREES . | - S ROND———
B3:0 Copy File f—
JF Source #N7:2 |
1L Dest #N12:0
5 Length 25

g containing copy instruction to copy 25 words, or elements, from
: dder run
Figure 17-18 L2

: er.
one integer file 10 anoth

e T ———
the Source Is | And the Destinati

gt ation Is | And the Length Is What Will Be Transferred?

#N7:2 #N7:200 |

10 10 integer file elements or 10 words

#N7:0 #T4:12 :
i 6 The equivalent of 6 timer elements or 18 integer
| Ssiesemmes= words or elements

#T74:0 #C5-
- o2 6 Copies 6 timer elements or 18 words
},—f—— : 6 Copies 6 words or 2 counter elements
L——f—m 0 #3150 75 The equivalent of 75 bit file elements or 75 words

Figure 17-17 Elements transferred for mixed file copy examples.

18

Reserved Bits

Preset Value

-

Accumulated Value

One timer element Is made of three 16-bit words.

ov

UN

UA

Reserved Bits

Preset Value

Accumulated Value

19

Figure 17-21 Data alloca

tion for our drink manufacturing process.

/—I;gredionts ‘
; Fruit P PN
s unch Tropical Punch Citrus Punch Orange
ter
i B 100 | 120 130 150 _J
ﬂejtener 25 o - J[20]
Grape Flavor 8 5 5 ’ 0 J
Orange Flavor 0 25 75 90 J
Pineapple Flavor 10 25 30 0 J
Apple Flavor 2 8 0 0 J
Pear Flavor 1 0 1 0 J
Strawberry Flavor 8 0 0 0 _]
Passion Fruit Flavor 0 10 0 0 J
Figure 17-20 Recipes for our drink manufacturing process.
Selector Switch Rb’cipe Storage Total Words Reserved /
Drink Input Address Addresses for Recipe
N ; N12:0-N12:9 10]
Fruit Punch 1:3/4 I
M : N12:10-N12:19 10
Tropical Punch 1:3/5
) = 1:3/6 N12:20-N12:29 10]
Citrus Punch e
—— 1:3/7 N12:30-N12:39 10]
Orange e

20

Fruit punch

Figure 17-22

I3 B3:0
[i
LOSR 4
4 4
1746-1A6
Tropical punch
I3 B3:0
| I’ 5
_ LOSF! 1
S 3
1746-1A6
Citrus punch
I:3 B3:0
| | []
6 2
1746-1A16
Orange punch
I B3:0
[7]
7 1
1746-1A16

Drink flavor selection portion of our program.

|

——COP —————
Copy File
Source #N12:0 |
. Dest #N7:50
. Length 10
—COP
Copy File
Source #N12:10 <
Dest #N7:50
Length 10
CcOP
Copy File
' Source #N12:20
~ Dest #N7:50
Length 10
— COP
| Copy File
Source #N12:30
Dest #N7:50 |
Length 10

21

LOGICAL INSTRUCTIONS

ne AND Instruction

ne OR Instruction

ne Exclusive-OR Instruction

> W
4 4 4 -

ne NOT Instruction

22

The AND Instruction

Source A: 1:1 10101010 10101010
Source B: B3:1 0000 0000 0110 1101
Destination: B3:2 0000 0000 0010 1000

Source A Source B Destination
0 0 e
0 1 0
1 0 0
1 1 !
AND truth table.
B30/5 BE300
B {ow)

Figure 17-26 RSLogix 500 software AND instruction.

———AND
| Bitese AND

| Source A I'10

AAAAh=

Sowrce B B3l

006D h=

Diest B3 2

0028h<

ANDing source A and source B and the resulting 16-bit word.

23

The OR Instruction

HEX Binary
Source A: B3:0 00DBh 0000 0000 1101 1011
Source B: B3:1 006Dh 9900_6006 6110 71101
Destination: B3:2 00FFh 00 00 ;

0000 00(!(_)71111 1111

ORing source A and source B and the resulting 16-bit word.

Source A SourceB | Destination d
0 0 0
1
0 1 |
1 0 | 1
1 1 1 1
OR truth table.
B3:0 B3:0
i r 1
_] E LOSRJ
S 0

Figure 17-31 OR instruction on a ladder rung.

OH
Bitwise Inclusive OH
Source A B30
00DBh«
Source B B3
006N«
Dest B32

0000«

24

The Exclusive-OR Instruction

Raghe A 5N H
Source A Source B Destination EX Binary
0 0 0 source A: B3:0 00DBh 0000 0000 1101 1011
0] 1 source B: B3:1 006Dh 0000 0000 0110 1101
ination: B3:2 00FFh 0000 0 SET
. 5 1 Destination 000 1011 OHLJ
1 1 0) Exclusive ORing source A and source B and the resulting 16-bit worg
ord.
Exclusive-OR truth table.
B3:0 B3:0 — XOR ——— :
1 E [osR }— ' Bitwise Exclusive-OR |
1L L 5 ' Source A B3:.0 |
P | 00DBh< |
Source B B3:1 |
| 006Dh< |
- Dest B3:2
L 0000h< |
L]

i - Exclusive-OR instruction on a ladder rung.
Figure 17-34 25

The NOT Instruction

Destination

1 0
Truth table for NOT logic.
B3:0 B3:0
1[[1
1 1255]
5 0

Figure 17-37 NOT logic as an output instruction on a PLC ladd

destination will contain 1111 ‘1 111 0010 0100.

NOT
NOT
Source B3:0
0000000011011011<
Dest B3:2

1111 1111 0010 0100<

er rung. After execution,

The Limit Test Instruction

LIM =] B30

L 0 (F
- Test I:7.g<n
High Limit :;gg(

- ; ion testing for values between 0 and 1750
i limit test instruction |
Figure 17-40 The

o | B3:3/0
- Limit Test e
0000 " Low Limit 100 { —
100<
Test 1:7.0
. O<
High Limit 0
0‘:.

Figure 17-41 The limit test instruction testing for values outside the range of 0 to 100.

The Scale with Parameters Instruction

Panel view
operator interface

0-1750 rpm

|

VFD

i

| SLC 500 PLC
| 5
/
0
4
v
Integer Output status
file table
0-1750 0-32767
| i
L——»SCP——

Motor
0-1750 rpm

Fi 17-42 Data flow from a panel view operator interface terminal into the PLC and out
igure 1/-

to a VFD.

28

Figure 17-45 The scale with

to 32767.

' Scaled Max. 32767

SCP
Scale w/Paramelers

[nput I70
O<

Input Min. 0
O<

Input Max. 1750
1750<

- Scaled Min. 0

O< !

32767<

. Output 0:1.0 |

O<

parameters instruction scaling the input value of 0 to 1750 to 0

29

THE SEQUENCER

SEQUENCER INSTRUCTIONS

Instruction Use

Use This Instruction to

Functional Description

Sequencer Output

Control machine sequence

Each 16-bit word represents 16 outputs on an output module.
Outputs are controlled by sequencing from one word to the next.

Sequencer Compare

Monitor inputs

Compare 16-bit internal data to a 16-bit input module’s input points.
Listidenct®

Sequencer Load

Load data into a data file
sequentially

I[.)oad data into a data file from each step of a sequencer operation.
ata can be from the input status file or another data file.

Figure 18-1 Sequencer instructions available for the Allen-Bradley SLC 500 family of PLCs

30

g

e

SEQUENCER INSTRUCTIONS

L% s
1| Sequencer Output

L5 S File #B3:0

- Mask OFFFh

1746-1A8 Dest 0:2.0

Control R6:0

Length ' 17<

Position O<

(e
on)-

Figure 18-2 SLC 500 PLC family sequencer output instruction on a ladder rung.

31

Figure 18-3 Bit file containing sequencer step data.

15 | 14|13 122|110 9] 8] 7 e v il Mk |

ool oo | o] o|o| 0] o 0 | 0| 0 | O | Stan

o lo|o|o|o|lo|o|o]o L ___s“_"T

o|o|o|o|o|o]|o]| o] 0 | 0 | 0 [T LONpE

o lo|lo|o | 1|1 1] 1]o0 0 | 0 | 0| O [Steps
0 0 0 '07 Step 4

32

Source bit
file word

Mask passes
all bits

Bils to output
slatus file

Figure 18-4

output status file designate

— SQ0

Sequencer ats

tep One.
d by the sé

Sequencar Outpad
—{ I'\ File w830
Mask FFFF —
Destination 02
Control R62
Length 4 »
Position 1 SQO instruction steps through the bit file.

Each bit file word is & sequence step
15|14 |13 (12|11|1w0|9|(8|7|6|5|4 |3 |2(1]0
oJolo|o|o|o|o|o|o]o|o|o |o|o|O|O]| Sarn
oJloJo|[oJo|o|o|Jo|Jofo|ofo |1 |1 |1]1] Stepl
ofoflofolo|o|o|o[1]|1 |1]|t |O]|O|O|O]| Step2
oloJo|o|1]|1]1]|]1]0|o]|o|o |o |0 |O]O| Step3
1{1]1[1|o]o]lo]o|o]o|ofo[ofo]|o] o] Stp J

Each bit file word (sequence step) is passed through
the programmed hexadecimal mask.
J Output module
olololo|lo]ojofo|ojojofojrfr|1}T D[___]DD
alalalaf oo o0]!
sTololo[o]o[oo]ofo]ofo]*|*]!]" T O O O
(S S i 9
I) 19
S S —
s e b T, T s
i’”“'”"”W""'“’“m‘“m:gn:wmmwmmo-é) — 3
The destin ,mumisexanvbisw‘l’ v [} <
ae Q S e
S S O
@ e
9 NS
o 9,

sequencer file word 0000 0000 0000 1111 will be sent to the
quencer instruction, and then out to the output module.

33

Figure 18-5

Status Explanation 15|14 |13 11/10/| 9|8 6 Ry
#B3:0 B3:0, Step 0 olo/ o o 0o 0o 0 0f00 0/ 00
Sequencer | Start-up position | l |
File = ———tTT-T-To ol .

B3:1, Step 1 0 | 0 0 o 0 0 O 0 1111
Length Turnsion Output 0[2.3 1] l | N - ‘ o
5 words B3:2, Step 2 W ololo 0o 0 0 O R 0 0|0
| ||
Turns_on Output 4, 5, 6, 7__ I S O A O 41 ' 4 |
B3:3, Step 3 (o|ofofo|1[1]1] 0 000
Turns on Output 8,9, 10, 11 ' J | |
- — b — - 1 T T + + - ' : R — v 1
B3:4, Step 4 1 1/1/0/0]0]0 0 ololo0
Turns on Output 12, 13, 14, 15 | |
—— + * + — > — 4 1 _ B S
B3:5 ; | !
e R S —+—11
B3:6]L l ‘ | | 4.
B3:7 { | L J

Bit file B3 words B3:0 through B3:7. The address #B3:0 with a length of 5 is illustrated
along with words following the file.

34

EN

DN

ER

Word One, Length of Sequencer File (LEN)

Word Two, Position (POS)

Figure 18-6 Three-word C

ontrol element for the SLC 500 sequencer output instruction.

35

Status

Explanation

14

13

12

"

10

#B3:0
Sequencer File

Length
17 words

B3:0, Step 0

’ Stant-up position

B3:1, Step 1

_Tums on Output 0

B3:2, Step 2
Turns on Output 1

_8_3:3. Step 3

Turns on Output 2

B3:4, Step 4
Turns on Qutput 3

B3:5, Step 5
Tumns on Output 4

B3:6, Step 6
Turns on Output 5

B3:7, Step 7
Tums on Output 6

B3:8, Step 8
Turns on Output 7

B39, Step 9
Turns on Output 8

B3:10, Step 10
Turmns on Output 9

B3:11, Step 11
Turns on Output 10

B3:12, Step 12
Turns on Output 11

B3:13, Step 13
Turns on Output 12

B3:14, Step 14
Turns on Output 13

B3:15, Step 15
Turns on Output 14

B3:16, Step 16
Tumns on Output 15

Bit file 3, word 17

B3:17

Bit file 3, word 18

B3:18

Bit file 3, word 19

B3:19

Bit file 3, word 20

B3:20

Figure 18-7 Seventeen-word, sixteen-step sequencer file.

36

PROGRAMMING THE SEQUENCER OUTPUT INSTRUCTION

v rSQO
I Sequencer Output
’ File #B3:0
0000] [Mask OFFFFh —(EN)—
5 Dest 0:2.0
1746-1B16 Control Re-0 (DN}
Length 17<
Position O<
0:3
R6:0
'd
0001 :‘] [\1)_—
ER 1746-0OB16
0:3
R6:0 ;:
1L \
0002 7 6 o 3 }_“
DN 1746-0OB16
0:3
R6:0 2R
g 8 8 —{)
0003 1 4
EN 1746-0B16

Fi 8.8 RSLogix 500 sequencer output instruction and associated status bit rungs.
Igure 18-

Problem-1

The Workpiece starts moving on the left side and moves to the right
when the start button is pressed. When it reaches the rightmost limit,
the drive motor reverses and brings the workpiece back to the left most
position again and the process repeats. The forward and reverse push
buttons provides a means of starting the motor in either forward or
reverse so that the limit switches can take over automatic control. Draw
ladder diagram to execute this using a PLC.

Limit Switch 2

@900

START STOP FORWARD REVERSE

: Pushbutton Pus hbutton
InstrumentationTools.com

38

List of Inputs and Outputs

S.n Address Name Input/output
1 1:0/0 Start Input
2 1:0/1 Stop Input
3 B3:0 Start Latch Binary
4 1:0/2 Forward switch Input
5 1:0/3 Reverse Switch Input
6 1:0/4 Limit Switch 1 Input
7 1:0/5 Limit Switch 2 Input
7 0:0/0 Forward Motor Output
8 0:0/1 Reverse Motor Output

39

Start Stop start/stop Latch
I.0 I:0 B3:.0
. 'Lo —lfﬁ—.l <0>
Bul 1763 Bul.1763
start/stop Latch
B3:0
1L
J L
0
start'stop Latch Limit Switch 2 Limit Switch 1 Forward Motor
B3:0 1:0 I.0 00
]} e T — | | D
2 8 o s w Q)
0 5 < 0
Bul.1763 Bul.1763 Bul.1763
Forward PB
1.0
= T =
= N
2
Bul 1763
Forward Motor
o0
] L
1 C
0
Bul.1763
start'stop Latch Limit Switch 1 Limit Switch 2 Reverse Motor
B3:0 1:0 10 0:0
=¥ 5 —_—— =1 = 72N
¥ B = B = .
0 4 5 1
Bul.1763 Bul 1763 Bul 1763
Reverse PB
1.0
L
b =
3
Bul 1763
Reverse Motor
00
=
=] =
1
Bul.1763
{ END >—

IS4

1 00000000000:)000

E==i—{—n Limit Switch 1 Limit Switch 2

Motor
START STOP FORWARD REVERSE
: Pushbutton Pushbutton
InstrumentationTools.com

40

Problem-2

A motor coupled to a work table is used to move workpiece between
two limit switches. When the process starts, the workpiece should
move from its position in the forward direction until it encounters limit
switch LS1. Once it contacts LS1 it should start to move in reverse
direction until it encounters limit switch LS2. This process should repeat
until a manual stop button is pressed. A start button should be pressed
to turn on the process. Draw ladder diagram to execute this using a PLC.

0000(:00000000000 000 a8

@:}1@ Limit Switch 2 Limit Switch1
Motor

START STOP FORWARD REVERSE

; Pushbutton Pushbutton 1
InstrumentationTools.com 4

Problem-3

Material A and material B are collected in a tank. These materials will be
mixed for 20 sec and then the mixed product drained out through the
outlet valve. Two level sensors are used for detecting the level of material
A and material B. Also one low level sensor used for detecting the bottom
level. To control level of this system, valve is used which has two states,
either fully opened or fully closed. After successfully completion of mixing,
outlet valve is operated to drain the mixed material. When mixing process
is completed, buzzer will be activated and it will remain ON and after 5 sec
it will be automatically OFF. Draw ladder diagram to execute this using a
PLC.

Agitator
Inlet valve 1 Motor Inlet valve 2

a2

r—--»l-- Material B

START STOP

Cycle ON

,,__J__.,ﬁ

Level material B || il

Material A

A

"r‘ﬁ

Level material A || i

InstrumentationTools.com

LLS

Outlet valve

43

Network 1 : Cycle ON InstrumentationTools.com
%I0.1 %I0.0 %Q0.0
"STOP PB" “START PB" "CYCLE ON"
VI | | { \

I 11 | S J
%Q0.0
"CYCLE ON"
] 1
| I |
Network 2 : Inlet Valve 1 InstrumentationTools.com
%I1.0
%Q0.0 %I10.2 “LEVEL %Q0.1
"CYCLE ON" "LLS" MATERIAL A" “INLET VALVE 1"
1 1 1 1 Il/l [)
11 11 | \]
%I10.0
"START PB"
] 1
11
%Q0.1
"INLET VALVE 1"
] 1
11
Network 3 : Inlet Valve 2 InstrumentationTools.com
%I11.0 %I1.1
%Q0.0 "LEVEL "LEVEL %Q0.2
"CYCLE ON" MATERIAL A" MATERIAL B" “INLET VALVE 2"
] 1] 1 VI | 1\
| I | | I | | \ 1
%Q0.2
“INLET VALVE 2"
] |
11

44

Network 4 : Agitator Motor InstrumentationTools.com
%I1.1 %Q0.3
%Q0.0 “LEVEL %DB2.DBX6.0 "AGITATOR
"CYCLE ON" MATERIAL B" "TIMER".Q MOTOR"
] |] | VI | \
11 | I | 1 \ I/
%Q0.3
"AGITATOR
MOTOR"
] |
| I |
Network 5 : Timer InstrumentationTools.com
%DB2
%Q0.3 "TIMER"
%Q0.0 "AGITATOR TON
"CYCLE ON" MOTOR’ Time
] 1] 1
11 11 IN Q
T#20S PT ET
Network 6 : Outlet Valve InstrumentationTools.com
%Q0.0 %DB2.DBX6.0 %I10.2 %Q0.4
"CYCLE ON" "TIMER".Q "LLS" "OUTLET VALVE"
| 1 | | V' [
11 | I | | | S |
%Q0.4
"OUTLET VALVE"
] 1
| I |

45

Network 7 : Buzzer ON InstrumentationTools.com
%Q0.0 %DB2.DBX6.0 %Q0.5
“CYCLE ON" “TIMER".Q "BUZZER"
| | | | | S \

| | | | \ =
Network 8 : Buzzer OFF Timer InstrumentationTools.com
%DB3
"BUZZER RESET TIMER"
%Q0.5 TON
"BUZZER" Time
| |
| | IN Q
T#5S PT ET
Network 9 : Buzzer InstrumentationTools.com
%DB3.DBX6.0 %Q0.5
"BUZZER RESET TIMER" "BUZZER"
] | { R \
| | | Rl |

Q

46

Problem-4

In a soft drink plant a tank will be filled with two fluids, mixed and then the
tank is to be drained. When the start button is pressed pump A will be
turned on and valve A will be opened. Pump A runs for 15 seconds fill the
tank with fluid A and will be turned off and the valve A will be closed, after
pump A turns off pump B turns on and Valve B will open. Pump B runs for
10 seconds fill the tank with fluid B and will be turned off and Valve B get
closed. After pump B turns off mixer motor will get started, runs for 90
seconds. After mixing outlet valve C opens, pump C turns on runs for 25
seconds. After mixing outlet valve C opens, pump C turns on runs for 25
seconds and will be turned off. This process repeats for 10 cycles and then
the process stops. A manual stop button is also provided in the panel for
safety. Develop a PLC ladder program.

Supervisory Control and Data Acquisition System

The basic functions carried out by a SCADA system are:
1. Channel scanning
2. Conversion into engineering units

3. Data processing

48

NWoumMmOQOQIT

SCADA (Continued..)

I Display
module
o]
w .
o [F—>=| Signal > Analog E{;Z;Zm Serial
@ conditioner| | input =P P . < P interface
&5 | module | | module module
@ [—=— - Memory
s i
- Alarm
= | o —Plannunciator
@ 3 | Digital module v
% input » L
E = : mnﬁule Communication
1 - .
= with central
i _ computer
External . J;T;Zr
clock module

Figure 3.51 Supervisory control and data acquisition system.

49

SCADA (Continued..)

1. Channel Scanning

* There are many ways in which microprocessor can address the
various channels and read the data.

* The channel scanning and reading of data requires, the following
actions to be taken:
1. Sending channel address to multiplexer
2. Sending start convert pulse to ADC
3. Reading the digital data.

50

SCADA : Channel Scanning (Continued..)

Polling

* The microprocessor scans the channels to read the data, and this
process is called polling.

* In polling, the action of selecting a channel and addressing it, is the
responsibility of processor.

* The channel selection may be sequential or in any particular order
decided by the designer.

* It is also possible to assign priority to some channels over others, i.e.
some channels can be scanned more frequently than others.

* It is also possible to offer this facility of selecting the order of channel
addressing and channel priorities to the operator level.

51

SCADA : Channel Scanning (Continued..)

Time
1__ Channel __ Channel number 9ap
number
9 1
10 9 FF (H)
1 10 OF (H)
- ; FO (H)
ASCN g 5
(Scan array) 9
3 3
- 4 — 4
2 2
6 6
8 8
9 9
n.L— 7 nlL_ 7

Figure 3.52 Channel scan array. Figure 3.54 Scan array with time.

SCADA : Channel Scanning (Continued..)

* The processor may scan the channels continuously in the particular
order or the channels may be scanned after every fixed time period.

* The fixed time period approach requires a timer/counter circuit whose
output is connected to interrupt request input.

* The scan routine for one channel is incorporated in ‘Interrupt Service
Routine’.

53

SCADA : Channel Scanning (Continued..)

Interrupt scanning
* In interrupt scanning, transducer check for violation of limits.

* It sends interrupt request signal to processor when the analog signal
from transducer is not within High and Low limits boundary set by Analog
High and Analog Low signals.

 This is also called Scanning by Exception.

* When any parameter exceeds the limits, then the limit checking circuit
would send interrupt request to microprocessor which in turn would
monitor all parameters till the parameter values come back within pre-
specified limits.

* This allows for a detailed analysis of the system and the problems by the
SCADA system.

54

SCADA : Channel Scanning (Continued..)

"

Interrupt request
:D— signal to
microprocessor

>_
}

Vi

Figure 3.55 Interrupt request generation on limit violation.

55

SCADA (Continued..)

2. Conversion into engineering units

* The data read from the output of ADC should be converted to the
equivalent engineering units before any analysis is done or the data is
sent for display or printing.

* For an 8-bit ADC working in unipolar mode the output ranges between
0 and 255.

* An ADC output value will correspond to a particular engineering value
based on the following parameters.

1. Calibration of transmitters
2. ADC mode and digital output lines

SCADA : Conversion into engineering units (Continued..)

* The conversion of ADC output to engineering units involve multiplication
by conversion factor.

* The conversion factor is based on the ADC type, mode and the
transmitter range.

57

SCADA (Continued..)

3. Data Processing

* The data read from the ADC output for various
channels is processed by the microprocessor to
carry out limit checking and performance
analysis.

* For limit checking the Highest and Lowest Limits
for each channel are stored in an array.

 When any of the two limits is violated for any
channel, appropriate action like alarm
generation, printing, etc. is initiated.

Higher limit

10
20

Lower limit

02
09

Figure 3.56 Limit array.

58

SCADA (Continued..)

* In addition to limit checking, the system performance may also be
analysed and report could be generated for the manager level.

* This report will enable the managers to visualise the problems in the
system and to take decisions regarding system modification or
alternate operational strategy to increase the system performance.

59

Distributed SCADA Structure

* In any application, if the number of channels are quite large then more
than one SCADA system is used and the channels are distributed among
them.

e But, for performance analysis on the process plant, it is mandatory that
the data from various channels should reach a central location where it
can be consolidated and analysed to generate the reports on plant
performance.

* Figures 3.58(a) and (b) show the interfacing of number of SCADA
systems with central computer in star configuration and Daisy chain
configuration respectively.

60

Distributed SCADA Structure (Continued..)

» Serial

CPU
Serial
interface
module
+ A A +
Serial Serial Serial Serial
interface interface interface interface
module module module module
DAS, DAS, DAS, _, DAS,
] /'-______"""“--a._____-——————-..__________ \
] Process
[] [] [[] ® [] CH2 []
L CH-M L] _ ® CH-M
Sensors
(a)
Figure 3.58

Sensors |

interface
module

< From other

L]

L] L

(a) Distributed SCADA structure (Star configuration), and

(b) Distributed SCADA structure (Daisy chain configuration).

CPU
Serial
interface
module
To other
DAS
Serial
interface
module
DAS,

DAS

Serial
interface
module

‘/Fﬂ.-____‘-‘\
Process \
L J

¢+ CH,
CH-I L]

(b)

CH-M,

61

DISTRIBUTED CONTROL SYSTEMS

Dedicated computers concept c. c.

* In the earlier years, the !
individual computers had been
attached to the different parts
of the plants to be automated, @ ___/___ .\ [\ | _______|._,
which has led to an assembly of ,:3 E;g
distributed, mutually

Plant/Laboratory/Test field

independent and dedicated C, .- G, = Dedicated Computers

small computers. P, P, Py = Partial Processes
EX;, EX;, EX; = Experiments

Figure 7.1 Dedicated computers concept.

62

_ DISTRIBUTED CONTROL SYSTEMS (Continued..)
Centralised computer concept

* Due to the fact that even the small dedicated computers were
relatively costly, a centralised, single computer automation
structure was introduced, containing a middle-scale or large-scale
process control computer as its central part. Following essential
functions were concentrated in the computer itself:

* Process monitoring C) . —
* Data acquisition f> N0 0
* Alarming and logging

* Data processing
* Data archiving Y

—
|
|
|
AV
AN
.
&@—
- 6._
[

* Process control

Plant
Figure 7.2 Centralised computer control concept. 63

DISTRIBUTED CONTROL SYSTEMS (Continued..)

Decentralised computer concept To computer centre
 The main reason for transition from @\ H
. . . - K
decentralized to the totally distributed compuer —
. . . //) O C)
automation concept lies in the rather
inherent implementation difficulties of |
a decentralised system. omter N omter N emter
* These may be due to / \ / \ / \
[4 A | ¥ A | [A |
a. hardware problems (mainly il — Pe| | P P i P
interfacing problems), or P. P, P—Partial processes ™

Figure 7.3 Decentralised computer control concept.

b. software problems (compatibility
and transportability problems).

64

Functional Requirements of a Distributed Process Control System

* The basic functional requirements of a distributed process control
system are:

1. it should have a consistent and uniform system approach

2. it should fulfill and perform all operational, process and plant
control functions

3. it should automatically control the process and plant in normal
operation within the specified limits and tolerances but also

permit manual operation

65

Functional Requirements of a Distributed Process Control System (Continued..)

4.

it should provide at any time, the operating personnel with
comprehensive information on the status of plant and process for
control and maintenance purposes, fault detection and localisation

it should permit the manipulation without specialised programming
knowledge of parameters and process control functions, as may be
required or desirable from time to time

it should be so designed that future expansions can be easily and
economically implemented

it should enable highly economical plant operation

Reference

1. Introduction to Programmable Logic Controllers, Garry Dunning,
3"d edition, Cengage learning.

2. https://instrumentationtools.com/plc-programming-example-for-
motor-forward-and-reverse/

67

https://instrumentationtools.com/plc-programming-example-for-motor-forward-and-reverse/
https://instrumentationtools.com/plc-programming-example-for-motor-forward-and-reverse/

	Slide 1: PLCs AND DCS IN PROCESS CONTROL AUTOMATION
	Slide 2: PLC Instructions & Introduction to SCADA & DCS
	Slide 3: Contents
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: PROGRAMMING THE SEQUENCER OUTPUT INSTRUCTION
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Supervisory Control and Data Acquisition System
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: DISTRIBUTED CONTROL SYSTEMS
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

