Operating Systems | 24A1303

MODULE 3

1. Deadlocks
e System Model

e Deadlock Characterization

e Methods for Handling Deadlocks

e Deadlock Prevention

e Deadlock Avoidance

e Deadlock Detection and Recovery from Deadlock
2. Memory management

e Memory Management Strategies

e Background

e Swapping

e Contiguous Memory Allocation

e Paging

e Structure of Page Table

e Segmentation

1 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

DEADLOCKS

A process requests resources, if the resources are not available at that time, the process enters a
waiting state. Sometimes, a waiting process is never again able to change state, because the
resources it has requested are held by other waiting processes. This situation is called a
Deadlock.

System Model

e A system consists of a finite number of resources to be distributed among a number of
competing processes. The resources are partitioned into several types, each consisting of
some number of identical instances. Memory space, CPU cycles, files,and 1/0 devices are
examples of resource types.

e A process must request a resource before using it and must release the resource after
using it. A process may request as many resources as it requires carrying out its
designated task. The number of resources requested may not exceed the total number of
resources available in the system.

Under the normal mode of operation, a process may utilize a resource in only the following
sequence:-

1. Request: The process requests the resource. If the request cannot be granted
immediately, then the requesting process must wait until it can acquire the resource.

2. Use: The process can operate on the resource.

3. Release: The process releases the resource.

A set of processes is in a deadlocked state when every process in the set is waiting for an event
that can be caused only by another process in the set. The events with which we are mainly
concerned here are resource acquisition and release. The resources may be either physical

resources or logical resources.

To illustrate a deadlocked state, consider a system with three CD RW drives.

Suppose each of three processes holds one of these CD RW drives. If each process now requests

2 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

another drive, the three processes will be in a deadlocked state.

Each is waiting for the event "CD RW is released,” which can be caused only by one of the other
waiting processes. This example illustrates a deadlock involving the same resource type.
Deadlocks may also involve different resource types. For example, consider a system with one
printer and one DVD drive. Suppose that process Pi is holding the DVD and process Pj is

holding the printer. If Pi requests the printer and Pj requests the DVD drive, a deadlock occurs.

Deadlock Characterization

Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode, that is,
only one process at a time can use the resource. If another process requests that resource,
the requesting process must be delayed until the resource has been released.

2. Hold and wait: A process must be holding at least one resource and waiting to acquire
additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be released only
voluntarily by the process holding it, after that process has completed its task.

4. Circular wait: A set {P0, PI, ..., Pn} of waiting processes must exist such that Po is
waiting for a resource held by P1, P1 is waiting for a resource held by P2, ..., Pn-1 is

waiting for a resource held by Pn and Pn is waiting for a resource held by Po.

Resource-Allocation Graph

Deadlocks can be described in terms of a directed graph called System Resource-Allocation
Graph.
The graph consists of a set of vertices V and a set of edges E. The set of vertices V is
partitioned into two different types of nodes:

e P={P1,P2,..Pn}, the set consisting of all the active processes in the system.

e R={R1,R2, ..., Rm} the set consisting of all resource types in the system.
A directed edge from process Pi to resource type Rj is denoted by Pi — Rj it signifies that

process Pi has requested an instance of resource type Rj and is currently waiting for that

3 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

resource.
A directed edge from resource type Rj to process Pij is denoted by Rj — Pi it signifies that an
instance of resource type Rj has been allocated to process Pi.

o Adirected edge Pi — Rj is called a Request Edge.

e Adirected edge Rj — Pi is called an Assignment Edge.
Pictorially each process Pij as a circle and each resource type Rj as a rectangle. Since resource
type Rj may have more than one instance, each instance is represented as a dot within the
rectangle.
A request edge points to only the rectangle Rj, whereas an assignment edge must also designate
one of the dots in the rectangle.
When process Pi requests an instance of resource type Rj, a request edge is inserted in the
resource-allocation graph. When this request can be fulfilled, the request edge is instantaneously
transformed to an assignment edge. When the process no longer needs access to the resource, it

releases the resource; as a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure depicts the following situation.

. °
.
R, °
R,

The sets P, Kand E:

e P={P1,P2,P3}

e R={R1, R2, R3, R4}

e E={PI-RI|,P2 >R3,RI -P2,R2—>P2,R2—>P1,R3—>P3}
Resource instances:

¢ One instance of resource type R1

4 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

e Two instances of resource type R2

e One instance of resource type R3

e Three instances of resource type R4

Process states:

e Process P1 is holding an instance of resource type R2 and is waiting for aninstance of
resource type R1.

e Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an
instance of R3.

e Process P3 is holding an instance of R3.

If the graph does contain a cycle, then a deadlock may exist.

e |f each resource type has exactly one instance, then a cycle implies that a deadlock has
occurred. If the cycle involves only a set of resource types, each of which has only a
single instance, then a deadlock has occurred. Each process involved in the cycle is
deadlocked.

o |f each resource type has several instances, then a cycle does not necessarily imply that
a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a

sufficient condition for the existence of deadlock.

To illustrate this concept, the resource-allocation graph depicted in below figure:

Suppose that process P3 requests an instance of resource type R2. Since no resource instance is
currently available, a request edge P3 — R2 is added to the graph. At this point, two
minimal cycles exist in the system:

1. P1-R1—>P2—-R3—P3—R2-P1

2. P2—>5R3 —>P3—>R2—>P2

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is
held by process P3. Process P3 is waiting for either process Pl or process P2 to release

resourceR2. In addition, process P1 is waiting for process P2 to release resource R1.

5 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

R, A,
ENEN
\ \

\

° @
°

R, °
R,

Resource-allocation graph with a deadlock.

Consider the resource-allocation graph in below Figure. In this example also have a cycle:
P1—-R1—-P3—R2—P1

@

Py

Resource-allocation graph with a cycle but no deadlock
However, there is no deadlock. Observe that process P4 may release its instance of resource type

R2. That resource can then be allocated to P3, breaking the cycle.

Methods for Handling Deadlocks

The deadlock problem can be handled in one of three ways:

1. Use a protocol to prevent or avoid deadlocks, ensuring that the system will neverenter a
deadlocked state.

2. Allow the system to enter a deadlocked state, detect it, and recover.

3. Ignore the problem altogether and pretend that deadlocks never occur in the system.

To ensure that deadlocks never occur, the system can use either deadlock prevention or

a deadlock-avoidance scheme.

Deadlock prevention provides a set of methods for ensuring that at least one of the necessary

conditions cannot hold. These methods prevent deadlocks by constraining how requests for

6 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

resources can be made.

Deadlock-avoidance requires that the operating system be given in advance additional
information concerning which resources a process will request and use during its lifetime. With
this additional knowledge, it can decide for each request whether or not the process should wait.
To decide whether the current request can be satisfied or must be delayed, the system must
consider the resources currently available, the resources currently allocated to each process, and
the future requests and releases of each process.

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may arise. In this environment, the system can provide an algorithm
that examines the state of the system to determine whether a deadlock has occurred and an
algorithm to recover from the deadlock.

In the absence of algorithms to detect and recover from deadlocks, then the system is in a
deadlock state yet has no way of recognizing what has happened. In this case, the undetected
deadlock will result in deterioration of the system's performance, because resources are being
held by processes that cannot run and because more and more processes, as they make requests
for resources, will enter a deadlocked state. Eventually, the system will stop functioning and will

need to be restarted manually.

Deadlock Prevention

Deadlock can be prevented by ensuring that at least one of the four necessary conditions cannot
hold.

1) Mutual Exclusion

e The mutual-exclusion condition must hold for non-sharable resources. Sharable
resources, do not require mutually exclusive access and thus cannot be involved in a
deadlock.

o Ex: Read-only files are example of a sharable resource. If several processes attempt to
open a read-only file at the same time, they can be granted simultaneous access to the
file. A process never needs to wait for a sharable resource.

e Deadlocks cannot prevent by denying the mutual-exclusion condition, because some

resources are intrinsically non-sharable.

7 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

2) Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, then guarantee that,

whenever a process requests a resource, it does not hold any other resources.

Ex:

One protocol that can be used requires each process to request and be allocated all its
resources before it begins execution.

Another protocol allows a process to request resources only when it has none. A process
may request some resources and use them. Before it can request any additional resources,

it must release all the resources that it is currently allocated.

Consider a process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If all resources must be requested at the beginning of
the process, then the process must initially request the DVD drive, disk file, and printer.
It will hold the printer for its entire execution, even though it needs the printer only at the
end.

The second method allows the process to request initially only the DVD drive and disk
file. 1t copies from the DVD drive to the disk and then releases both the DVD drive and
the disk file. The process must then again request the disk file and the printer. After

copying the disk file to the printer, it releases these two resources and terminates.

The two main disadvantages of these protocols:

1. Resource utilization may be low, since resources may be allocated but unused for along

period.

2. Starvation is possible.

3) No Preemption

The third necessary condition for deadlocks is that there be no preemption of resources thathave

already been allocated.

To ensure that this condition does not hold, the following protocols can be used:

If a process is holding some resources and requests another resource that cannot be

immediately allocated to it, then all resources the process is currently holding are

8 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

preempted.

e The preempted resources are added to the list of resources for which the process is
waiting. The process will be restarted only when it can regain its old resources, as well as
the new ones that it is requesting.

If a process requests some resources, first check whether they are available. If they are, allocate
them.

If they are not available, check whether they are allocated to some other process that is waiting
for additional resources. If so, preempt the desired resources from the waiting process and
allocate them to the requesting process.

If the resources are neither available nor held by a waiting process, the requesting process

must wait. While it is waiting, some of its resources may be preempted, but only if another
process requests them.
A process can be restarted only when it is allocated the new resources it is requesting and

recovers any resources that were preempted while it was waiting.

4) Circular Wait

One way to ensure that this condition never holds is to impose a total ordering of all resource

types and to require that each process requests resources in an increasing order of enumeration.
To illustrate, let R = {R1, R2, ... , Rm} be the set of resource types. Assign a unique integer
number to each resource type, which allows to compare two resources and to determine whether
one precedes another in ordering. Formally, it defined as a one-to-one function
F: R ->N, where N is the set of natural numbers.

Example: if the set of resource types R includes tape drives, disk drives, and printers, then the
function F might be defined as follows:

F (tape drive) =1

F(disk drive) = 5

F(printer) =12
Now consider the following protocol to prevent deadlocks. Each process can request resources
only in an increasing order of enumeration. That is, a process can initially request any number of
instances of a resource type -Ri. After that, the process can request instances of resource type Rj
if and only if F(Rj) > F(Ri).

9 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

DEADLOCK AVOIDANCE

To avoid deadlocks additional information is required about how resources are to be
requested. With the knowledge of the complete sequence of requests and releases for
each process, the system can decide for each request whether or not the process should
wait in order to avoid a possible future deadlock

Each request requires that in making this decision the system consider the resources
currently available, the resources currently allocated to each process, and the future
requests and releases of each process.

The various algorithms that use this approach differ in the amount and type of
information required. The simplest model requires that each process declare the
maximum number of resources of each type that it may need. Given this a priori
information, it is possible to construct an algorithm that ensures that the system will
never enter a deadlocked state. Such an algorithm defines the deadlock-avoidance

approach.

1) Safe State

Safe state: A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. A system is in a safe state only if
there exists a safe sequence.

Safe sequence: A sequence of processes <P1, P2, ..., Pn> is a safe sequence for the
current allocation state if, for each Pi, the resource requests that Pi can still make canbe
satisfied by the currently available resources plus the resources held by all Pj, with j <i.

In this situation, if the resources that Pi needs are not immediately available, then Pi can wait

until all Pj have finished. When they have finished, Pi can obtain all of its needed resources,

complete its designated task, return its allocated resources, and terminate. When Pi terminates,

Pi+1 can obtain its needed resources, and so on. If no such sequence exists, then the system state

is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all

unsafe states are deadlocks as shown in figure. An unsafe state may lead to a deadlock. As long

as the state is safe, the operating system can avoid unsafe states.

10 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

unsafe

deadlock

ﬂ

Safe, unsafe, and deadlocked state spaces.

2) Resource-Allocation-Graph Algorithm

e If a resource-allocation system has only one instance of each resource type, then a
variant of the resource-allocation graph is used for deadlock avoidance.

e In addition to the request and assignment edges, a new type of edge is introduced, called
a claim edge.

e A claim edge Pi ->Rj indicates that process Pi may request resource Rj at some time in
the future. This edge resembles a request edge in direction but is represented in the
graph by a dashed line.

e When process Pi requests resource Rj, the claim edge Pi ->Rj is converted to a
request edge. When a resource Rj is released by Pi the assignment edge Rj->Pi is

reconverted to a claim edge Pi->Rj.
Ry

R
Resource-allocation graph for deadlock avoidance.
Note that the resources must be claimed a priori in the system. That is, before process Pi
starts executing, all its claim edges must already appear in the resource-allocation graph.
We can relax this condition by allowing a claim edge Pi ->R] to be added to the graph only if all

11 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

the edges associated with process Pi are claim edges.

Now suppose that process Pi requests resource Rj. The request can be granted only if converting
the request edge Pi ->Rj to an assignment edge Rj->Pi does not result in the formation of a cycle
in the resource-allocation graph.

There is need to check for safety by using a cycle-detection algorithm. An algorithm for

detecting a cycle in this graph requires an order of n® operations, where n is the number of
processes in the system.
e If no cycle exists, then the allocation of the resource will leave the system in a safe state.
e If acycle is found, then the allocation will put the system in an unsafe state. In that case,
process Pi will have to wait for its requests to be satisfied.

To illustrate this algorithm, consider the resource-allocation graph as shown above. Suppose that
P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this action will
create a cycle in the graph.

A cycle, indicates that the system is in an unsafe state. If P1 requests R2, and P2 requests R1,

then a deadlock will occur.

R

An unsafe state in a resource-allocation graph

3) Banker's Algorithm

The Banker’s algorithm is applicable to a resource allocation system with multiple instances of

each resource type.

e When a new process enters the system, it must declare the maximum number of instances

12 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

of each resource type that it may need. This number may not exceed the total number of
resources in the system.

e When a user requests a set of resources, the system must determine whether the allocation
of these resources will leave the system in a safe state. If it will, the resources are
allocated; otherwise, the process must wait until some other process releases enough
resources.

To implement the banker's algorithm the following data structures are used.

Let n = number of processes, and m = number of resources types
Available: A vector of length m indicates the number of available resources of each type. If
available [j] = k, there are k instances of resource type Rj available.

Max: An n x m matrix defines the maximum demand of each process. If Max [i, j] = k, then
process Pi may request at most k instances of resource type Rj.

Allocation: An n x m matrix defines the number of resources of each type currently allocatedto

each process. If Allocation [i, j] = k then Pi is currently allocated k instances of Rj.

Need: An n x m matrix indicates the remaining resource need of each process. If Need [i,j] =
k,then Pi may need k more instances of Rj to complete its task.
Need [i, j] = Max{i, j] — Allocation [i, j]

Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state. This algorithm can be
described as follows:
1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available
Finish [i] = false fori=0, 1,...,n- 1

2. Find an index i such that both:

Finish[i] == false
Needj < Work

If no such i exists, go to step 4

3. Work = Work + Allocationij

13 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

Finish[i] = true
go to step 2
4. If Finish [i] == true for all i, then the system is in a safe state
This algorithm may require an order of m x n? operations to determine whether a state is safe.

Resource-Request Algorithm

The algorithm for determining whether requests can be safely granted.
Let Requesti be the request vector for process Pi. If Requesti [j] == k, then process Pij wants k

instances of resource type Rj. When a request for resources is made by process Pi, the following
actions are taken:
1. If Requesti < Needi go to step 2. Otherwise, raise error condition, since process has
exceeded its maximum claim.
2. If Requesti < Available, go to step 3. Otherwise Pi must wait, since resources are not

available
3. Have the system pretend to allocate requested resources to Pi by modifying the state

as follows:
Available = Available — Request;
Allocationj = Allocationj + Requesti;
Needi = Needj — Requesti;
If safe = the resources are allocated to Pi

If unsafe = Pi must wait, and the old resource-allocation state is restored

Example

Consider a system with five processes Po through P4 and three resource types A, B, and C.
Resource type A has ten instances, resource type B has five instances, and resource type C has

seven instances. Suppose that, at time TQthe following snapshot of the system has been taken:

14 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

Allocation Max Available
ABC ABC ABC
Pa 010 753 332
P, 200 322
P> 302 902
P, 211 222
P, 002 433
The content of the matrix Need is defined to be Max — Allocation
Need
ABC
Py 743
P, 122
Ps 600
P 011
P, 431

The system is currently in a safe state. Indeed, the sequence <P1, P3, P4, P2, P0> satisfies the

safety criteria.

Suppose now that process P1 requests one additional instance of resource type A and two

instances of resource type C, so Requestl = (1,0,2). Decide whether this request can be

immediately granted.
Check that Request < Awvailable
(1,0,2) = (3,3,2) = true

Then pretend that this request has been fulfilled, and the following new state is arrived.

15 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

Allocation Need Available

ABC ABC ABC
P, 010 743 230
P4 302 020
P, 302 600
Py 211 011
P, 002 431

Executing safety algorithm shows that sequence <P1, P3, P4, PO, P2> satisfies safety

requirement.

DEADLOCK DETECTION

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,

then a deadlock situation may occur. In this environment, the system may provide:
e An algorithm that examines the state of the system to determine whether a deadlock
has occurred.

e Analgorithm to recover from the deadlock.

Single Instance of Each Resource Type

If all resources have only a single instance, then define a deadlock detection algorithmthat uses a
variant of the resource-allocation graph, called a wait-for graph.

e This graph is obtained from the resource-allocation graph by removing the resource
nodes and collapsing the appropriate edges.

e An edge from Pj to Pj in a wait-for graph implies that process Pi is waiting for process
Pjto release a resource that Pi needs. An edge Pi — Pj exists in a wait-for graph if and
only if the corresponding resource allocation graph contains two edges Pi — Rqg and Rq
— Pi for some resource Rq.

Example: In below Figure, a resource-allocation graph and the corresponding wait-for graph

is presented.

16 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

A,

®
®

E—®—D
C—@—1] ‘@'

(a) (b)
(a) Resource-allocation graph. (b) Corresponding wait-for graph.

e A deadlock exists in the system if and only if the wait-for graph contains a cycle. To
detect deadlocks, the system needs to maintain the wait-for graph and periodically invoke
an algorithm that searches for a cycle in the graph.

e An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is
the number of vertices in the graph.

Several Instances of a Resource Type

A deadlock detection algorithm that is applicable to several instances of a resource type. The
algorithm employs several time-varying data structures that are similar to those used in the
banker's algorithm.
e Auvailable: A vector of length m indicates the number of available resources of each
type.
e Allocation: An n x m matrix defines the number of resources of each type currently
allocated to each process.
e Request: An n x m matrix indicates the current request of each process. If Request[i][j]

equals k, then process P; is requesting k more instances of resource type Rj.

Algorithm:
1. Let Work and Finish be vectors of length m and n, respectively Initialize:
Work = Available

Fori=1,2, ..., n, if Allocationj # O, then Finish[i] = false; otherwise, Finish[i] = true

17 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

2. Find an index i such that both:
Finish[i] == false
Requestij < Work
If no such i exists, go to step 4
3. Work = Work + Allocationi
Finish[i] = true
go to step 2
4. If Finish[i] == false, for some i, 1 <i <n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then Pj is deadlocked

Algorithm requires an order of O(m x n? operations to detect whether the system is in

deadlocked state.

Example of Detection Algorithm
Consider a system with five processes Po through P4 and three resource types A, B, and C.

Resource type A has seven instances, resource type B has two instances, and resource type C has

six instances. Suppose that, at time T0, the following resource-allocation state:

Allocation Request Available
ABC ABC ABC

Py 010 000 000
P, 200 202
P; 303 000
Py 211 100
P, 002 002

After executing the algorithm, Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for

all i
Suppose now that process P2 makes one additional request for an instance of type C. The

Request matrix is modified as follows:

18 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

Regquest

ABC
Pqg 000
Py 202
P> 001
P 100
P, 002

The system is now deadlocked. Although we can reclaim the resources held by process Po, the
number of available resources is not sufficient to fulfill the requests of the other processes. Thus,

a deadlock exists, consisting of processes P1, P2, P3, and P4.

Detection-Algorithm Usage

The detection algorithm can be invoked on two factors:

1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?
If deadlocks occur frequently, then the detection algorithm should be invoked frequently.
Resources allocated to deadlocked processes will be idle until the deadlock can be broken.
If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and
so we would not be able to tell which of the many deadlocked processes “caused” the
deadlock.

RECOVERY FROM DEADLOCK

The system recovers from the deadlock automatically. There are two options for breaking a

deadlock one is simply to abort one or more processes to break the circular wait. The other is to

preempt some resources from one or more of the deadlocked processes.

Process Termination

To eliminate deadlocks by aborting a process, use one of two methods. In both methods, the
system reclaims all resources allocated to the terminated processes.
1. Abort all deadlocked processes: This method clearly will break the deadlock cycle, but

at great expense; the deadlocked processes may have computed for a long time, and the

19 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

2.

results of these partial computations must be discarded and probably will have to be
recomputed later.

Abort one process at a time until the deadlock cycle is eliminated: This method incurs
considerable overhead, since after each process is aborted, a deadlock-detectionalgorithm

must be invoked to determine whether any processes are still deadlocked.

If the partial termination method is used, then we must determine which deadlocked process (or

processes) should be terminated. Many factors may affect which process is chosen, including:

1.
2.

o o > w

What the priority of the process is

How long the process has computed and how much longer the process will compute
before completing its designated task

How many and what types of resources the process has used

How many more resources the process needs in order to complete

How many processes will need to be terminated?

Whether the process is interactive or batch

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some resources

from processes and give these resources to other processes until the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to be addressed:

1.

Selecting a victim. Which resources and which processes are to be preempted? As in
process termination, we must determine the order of preemption to minimize cost. Cost
factors may include such parameters as the number of resources a deadlocked process is
holding and the amount of time the process has thus far consumed duringits execution.
Rollback. If we preempt a resource from a process, what should be done with that
process? Clearly, it cannot continue with its normal execution; it is missing some needed
resource. We must roll back the process to some safe state and restart it from that state.
Since it is difficult to determine what a safe state is, the simplest solution is a total
rollback: abort the process and then restart it.

Starvation. How do we ensure that starvation will not occur? That is, how can we

guarantee that resources will not always be preempted from the same process?

20 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

MEMORY MANAGEMENT

Memory Management Strategies

e Every program to be executed has to be executed must be in memory. The instruction
must be fetched from memory before it is executed.
¢ In multi-tasking OS memory management is complex, because as processes are swapped

in and out of the CPU, their code and data must be swapped in and out of memory.

Background

1) Basic Hardware

e Main memory, cache and CPU registers in the processors are the only storage spaces that
CPU can access directly.

e The program and data must be bought into the memory from the disk, for the process to
run. Each process has a separate memory space and must access only thisrange of legal
addresses. Protection of memory is required to ensure correct operation. This prevention

is provided by hardware implementation.

(0]
operating
system
256000
process
300040 { 300040 |
process base
420940 { 120900 |
process limnit
880000
1024000

A base and a limit-register define a logical-address space

e Two registers are used - a base register and a limit register. The base register holds the

smallest legal physical memory address; the limit register specifies the size of the range.

21 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

For example, The base register holds the smallest legal physical memory address; the
limit register specifies the size of the range. For example, if the base register holds
300040 and limit register is 120900, then the program can legally access all addresses
from 300040 through 420940 (inclusive)

The base and limit registers can be loaded only by the operating system, which usesa
special privileged instruction. Since privileged instructions can be executed onlyin kernel
mode only the operating system can load the base and limit registers.

base base + limit

address yes yes
CPU > <

no no

trap to operating system
monitor—addressing error memory

Hardware address protection with base and limit-registers

2) Address Binding

User programs typically refer to memory addresses with symbolic names. These

symbolic names must be mapped or bound to physical memory addresses.

Address binding of instructions to memory-addresses can happen at 3 different stages.

. Compile Time - If it is known at compile time where a program will reside in physical

memory, then absolute code can be generated by the compiler, containing actual physical
addresses. However, if the load address changes at some later time, then the program will

have to be recompiled.

. Load Time - If the location at which a program will be loaded is not known at compile

time, then the compiler must generate relocatable code, which references addresses
relative to the start of the program. If that starting address changes, then the program

must be reloaded but not recompiled.

22 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

3. Execution Time - If a program can be moved around in memory during the course of its

execution, then binding must be delayed until execution time.

GUFOE \

wgrap /
|

compiler or 1 compile
assembler time

{
othg \module
object |
modules

linkage
editor

— { Ioad\ load
e

modul time
system) \[, /
I|brary
/ﬁ loader ‘
dynamicall
[loaded l

\ system
in-memory

wrary
binary

~ dynamic
memory

linking
image

1 execution
time (run
time)

Multistep processing of a user program

3) Logical Versus Physical Address Space

e The address generated by the CPU is a logical address, whereas the memory address
where programs are actually stored is a physical address.

e The set of all logical addresses used by a program composes the logical address space,
and the set of all corresponding physical addresses composes the physical address space.

e The run time mapping of logical to physical addresses is handled by the memory-
management unit (MMU).

e One of the simplest is a modification of the base-register scheme.

e The base register is termed a relocation register

e The value in the relocation-register is added to every address generated by a user-

process at the time it is sent to memory.

23 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

e The user-program deals with logical-addresses; it never sees the real physical-

addresses.

relocation
register
14000
logical physical
address /\ address
CPU 5 memory
346 14346
MMU

Dynamic relocation using a relocation-register

4) Dynamic Loading

e This can be used to obtain better memory-space utilization.
e Arroutine is not loaded until it is called.

This works as follows:

1. Initially, all routines are kept on disk in a relocatable-load format.

2. Firstly, the main-program is loaded into memory and is executed.

3. When a main-program calls the routine, the main-program first checks to seewhether the
routine has been loaded.

4. If routine has been not yet loaded, the loader is called to load desired routine into
memory.

5. Finally, control is passed to the newly loaded-routine.

Advantages:
1. Anunused routine is never loaded.

2. Useful when large amounts of code are needed to handle infrequently occurringcases.
3. Although the total program-size may be large, the portion that is used (and hence loaded)
may be much smaller.

4. Does not require special support from the OS.

24 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

5) Dynamic Linking and Shared Libraries

With static linking library modules get fully included in executable modules, wasting
both disk space and main memory usage, because every program that included a certain
routine from the library would have to have their own copy of that routine linked into
their executable code.
With dynamic linking, however, only a stub is linked into the executable module,
containing references to the actual library module linked in at run time.
» The stub is a small piece of code used to locate the appropriate memory- resident
library-routine.
» This method saves disk space, because the library routines do not need to be fully
included in the executable modules, only the stubs.
» An added benefit of dynamically linked libraries (DLLs, also known as shared

libraries or shared objects on UNIX systems) involves easy upgradesand updates.

6) Shared libraries

Swa

A library may be replaced by a new version, and all programs that reference the library
will automatically use the new one.

Version info is included in both program & library so that programs won't accidentally
execute incompatible versions.

in

A process must be loaded into memory in order to execute.

If there is not enough memory available to keep all running processes in memory at the
same time, then some processes that are not currently using the CPU may have their
memory swapped out to a fast local disk called the backing store.

Swapping is the process of moving a process from memory to backing store and
moving another process from backing store to memory. Swapping is a very slow
process compared to other operations.

A variant of swapping policy is used for priority-based scheduling algorithms. If a

higher-priority process arrives and wants service, the memory manager can swap out the

lower-priority process and then load and execute the higher-priority process. When the

25 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

higher-priority process finishes, the lower-priority process can be swapped back in and

continued. This variant of swapping is called roll out, roll in.

Swapping depends upon address-binding:

e If binding is done at load-time, then process cannot be easily moved to a different
location.
e If binding is done at execution-time, then a process can be swapped into a different

memory-space, because the physical-addresses are computed during execution-time.

Major part of swap-time is transfer-time; i.e. total transfer-time is directly proportional to the

amount of memory swapped.

Disadvantages:

1. Context-switch time is fairly high.

2. If we want to swap a process, we must be sure that it is completely idle. Twosolutions:
e Never swap a process with pending I/0.

e Execute 1/0 operations only into OS buffers.

i Ty
A -~
operating T o
system
Py i process P,
1 swap ou X
2% swap in S
) e p
space backing store

main memory

Swapping of two processes using a disk as a backing store

Example:
Assume that the user process is 10 MB in size and the backing store is a standard hard disk

with a transfer rate of 40 MB per second.

26 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

The actual transfer of the 10-MB process to or from main memory takes10000 KB/40000 KBper

second = 1/4 second

= 250 milliseconds.

Assuming that no head seeks are necessary, and assuming an average latency of 8 milliseconds,

the swap time is 258 milliseconds. Since we must both swap out and swap in, the total swap time

is about 516 milliseconds.

Contiguous Memory Allocation

The main memory must accommodate both the operating system and the various user
processes. Therefore we need to allocate the parts of the main memory in the most
efficient way possible.

Memory is usually divided into 2 partitions: One for the resident OS. One for the user
processes.

Each process is contained in a single contiguous section of memory.

1) Memory Mapping and Protection

Memory-protection means protecting OS from user-process and protecting user-
processes from one another.
Memory-protection is done using

» Relocation-register: contains the value of the smallest physical-address.

» Limit-reqgister: contains the range of logical-addresses.

Each logical-address must be less than the limit-register.

The MMU maps the logical-address dynamically by adding the value in the
relocation-register. This mapped-address is sent to memory

When the CPU scheduler selects a process for execution, the dispatcher loads the
relocation and limit-registers with the correct values.

Because every address generated by the CPU is checked against these registers, we
canprotect the OS from the running-process.

The relocation-register scheme provides an effective way to allow the OS size to

changedynamically.

27 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

e Transient OS code: Code that comes & goes as needed to save memory-space and

overhead for unnecessary swapping.

limit relocation
register register

logical physical

address yes address

CPU = >+
L 4

A 4

memory

no

trap: addressing error

Hardware support for relocation and limit-registers

2) Memory Allocation

Two types of memory partitioning are:

1. Fixed-sized partitioning

2. Variable-sized partitioning

1) Fixed-sized partitioning

The memory is divided into fixed-sized partitions.

Each partition may contain exactly one process.

The degree of multiprogramming is bound by the number of partitions.

When a partition is free, a process is selected from the input queue and loaded
in to the free partition.

When the process terminates, the partition becomes available for another process.

2) Variable-sized Partitioning

The OS keeps a table indicating which parts of memory are available and which
parts are occupied.

A hole is a block of available memory. Normally, memory contains a set of

28 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

holes of various sizes.
e Initially, all memory is available for user-processes and considered one large hole.
e When a process arrives, the process is allocated memory from a large hole.
e If we find the hole, we allocate only as much memory as is needed and keep
the remaining memory available to satisfy future requests.

Three strategies used to select a free hole from the set of available holes:

1. Eirst Fit: Allocate the first hole that is big enough. Searching can start eitherat the
beginning of the set of holes or at the location where the previous first-fit search ended.

2. Best Fit: Allocate the smallest hole that is big enough. We must search the entire list,
unless the list is ordered by size. This strategy produces the smallest leftover hole.

3. Worst Fit: Allocate the largest hole. Again, we must search the entire list, unless it
is sorted by size. This strategy produces the largest leftover hole.

First-fit and best fit are better than worst fit in terms of decreasing time and storage utilization.

3) Fragmentation

Two types of memory fragmentation:
1. Internal fragmentation

2. External fragmentation

1) Internal Fragmentation

e The general approach is to break the physical-memory into fixed-sized blocks and
allocate memory in units based on block size.

e The allocated-memory to a process may be slightly larger than the requested-
memory.

e The difference between requested-memory and allocated-memory is called

internalfragmentation i.e. Unused memory that is internal to a partition.

2) External Fragmentation

e External fragmentation occurs when there is enough total memory-space to satisfy

a request but the available-spaces are not contiguous. (i.e. storage is

29 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

fragmented into a large number of small holes).

e Both the first-fit and best-fit strategies for memory-allocation suffer from external
fragmentation.

o Statistical analysis of first-fit reveals that given N allocated blocks, another 0.5 N

blocks will be lost to fragmentation. This property is known as the 50-percent rule.

Two solutions to external fragmentation:

e Compaction: The goal is to shuffle the memory-contents to place all free memory
together in one large hole. Compaction is possible only if relocation is dynamic and do
neat execution-time.

e Permit the logical-address space of the processes to be non-contiguous. This allows a
process to be allocated physical-memory wherever such memory is available. Two

techniques achieve this solution: 1) Paging and 2) Segmentation.

Paging
e Paging is a memory-management scheme.
e This permits the physical-address space of a process to be non-contiguous.
e This also solves the considerable problem of fitting memory-chunks of varying sizes
onto the backing-store.
e Traditionally: Support for paging has been handled by hardware.

e Recent designs: The hardware & OS are closely integrated.

1) Basic Method of Paging

e The basic method for implementing paging involves breaking physical memory into

fixed-sized blocks called frames and breaking logical memory into blocks of the samesize

called pages.

e When a process is to be executed, its pages are loaded into any available memory frames
from the backing store.

e The backing store is divided into fixed-sized blocks that are of the same size as the

memory frames.

30 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

logical physical
address address fO000 ... 0000

0Py [~ pTa] Tl
p{

f

i g P I |

physical
memory

page table

Paging hardware
e Address generated by CPU is divided into 2 parts:
1. Page-number (p) is used as an index to the page-table. The page-table contains the

base-address of each page in physical-memory.
2. Offset (d) is combined with the base-address to define the physical-address.
This physical-address is sent to the memory-unit.
e The page table maps the page number to a frame number, to yield a physical address.
e The page table maps the page number to a frame number, to yield a physical address
which also has two parts: The frame number and the offset within that frame.
e The number of bits in the frame number determines how many frames the system

can address, and the number of bits in the offset determines the size of each frame.

frame

number
page O (o]
o
page 1 1 1| page O
page 2 = 2
3
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

Paging model of logical and physical memory.

e The page size (like the frame size) is defined by the hardware.

31 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

e The size of a page is typically a power of 2, varying between 512 bytes and 16 MB per
page, depending on the computer architecture.

e The selection of a power of 2 as a page size makes the translation of a logical address into
a page number and page offset.

e If the size of logical address space is 2™ and a page size is 2" addressing units (bytesor
words), then the high-order m — n bits of a logical address designate the page number,

and the n low-order bits designate the page offset.

Thus, the logical address is as follows:

page number page offset
P d
m -n n
free-frame list free-frame list

1; 13 & 13 [page 1
18

20 14 14 |page 0
15

15 15

16 16

17 17

18 18 [page 2

19 0 19
1

20 2 20 |page 3
3

21 new-process page table 21

(a) (b)

Free frames (a) before allocation and (b) after allocation.

e When a process requests memory (e.g. when its code is loaded in from disk), free frames
are allocated from a free-frame list, and inserted into that process's page table.

e Processes are blocked from accessing anyone else's memory because all of their memory
requests are mapped through their page table. There is no way for them to generate an

address that maps into any other process's memory space.

32 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

e The operating system must keep track of each individual process's page table, updating it
whenever the process's pages get moved in and out of memory, and applying the correct
page table when processing system calls for a particular process. This all increases the

overhead involved when swapping processes in and out of the CPU.

2) Hardware Support Translation Look aside Buffer

e A special, small, fast lookup hardware cache, called a translation look-aside buffer
(TLB).

e Each entry in the TLB consists of two parts: a key (or tag) and a value.

e When the associative memory is presented with an item, the item is compared with all
keys simultaneously. If the item is found, the corresponding value field is returned. The
search is fast; the hardware, however, is expensive. Typically, the number of entries in a
TLB is small, often numbering between 64 and 1,024.

e The TLB contains only a few of the page-table entries.

Working:

logical

address
CPU —»' p d

page frame
number number

'Eg TLB hit physical
E | address
f]d} »
TLB I
p {
TLB miss
f

— physical
memory

page table

Paging hardware with TLB

33 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

When a logical-address is generated by the CPU, its page-number is presentedto the
TLB.

If the page-number is found (TLB hit), its frame-number is immediately available and
used to access memory.

If page-number is not in TLB (TLB miss), a memory-reference to page table must be
made. The obtained frame-number can be used to access memory.

In addition, we add the page-number and frame-number to the TLB, so that theywill
be found quickly on the next reference.

If the TLB is already full of entries, the OS must select one for replacement.

Percentage of times that a particular page-number is found in the TLB is called hit
ratio.

Advantage: Search operation is fast.

Disadvantage: Hardware is expensive.

Some TLBs have wired down entries that can't be removed.
Some TLBs store ASID (address-space identifier) in each entry of the TLB that uniquely
identify each process and provide address space protection for that process.

3) Protection

Memory-protection is achieved by protection-bits for each frame.

The protection-bits are kept in the page-table.

One protection-bit can define a page to be read-write or read-only.

Every reference to memory goes through the page-table to find the correct frame-
number.

Firstly, the physical-address is computed. At the same time, the protection-bit ischecked
to verify that no writes are being made to a read-only page.

An attempt to write to a read-only page causes a hardware-trap to the OS (ormemory

protection violation).

Valid Invalid Bit

This bit is attached to each entry in the page-table.

34 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

e Valid bit: “valid” indicates that the associated page is in the process’ logical
addressspace, and is thus a legal page
e Invalid bit: “invalid” indicates that the page is not in the process’ logical address
space
Illegal addresses are trapped by use of valid-invalid bit.

The OS sets this bit for each page to allow or disallow access to the page.

0
1
2| page O
00000 frame number valid—invalid bit
page 0 \ / 3| page 1
0|2 |v
page 1 1 IGIE 4| page 2
2(4|v
age 2 5
- 37V
page 3 4/8|v 6
5 KONV
page 4 ¢ [IcaN 7| page 3
10,468 page 5 7 8| page 4
12,287 page table
9| page 5
page n

Valid (v) or invalid (i) bit in a page-table

4) Shared Pages

e An advantage of paging is the possibility of sharing common code.

e Re-entrant code (Pure Code) is non-self-modifying code, it never changes during
execution.

e Two or more processes can execute the same code at the same time.

e Each process has its own copy of registers and data-storage to hold the data for

the process's execution.
e The data for 2 different processes will be different.
e Only one copy of the editor need be kept in physical-memory (Figure 5.12).

e Each user's page-table maps onto the same physical copy of the editor, but data pages are

35 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

mapped onto different frames.

Disadvantage: Systems that use inverted page-tables have difficulty

memory.

ed1

ed2

ed3

data 1

process P,

ed

ed 2

ed 3

data 3

process P,

Sharing of code in a paging environment

Structure of the Page Table

page table
for P,

page table
for Py

ed1

ed 2

ed 3

data 2

process P,

page table
for £,

The most common techniques for structuring the page table:

1. Hierarchical Paging
2. Hashed Page-tables
3. Inverted Page-tables

1) Hierarchical Paging

10

11

implementing shared-

data 1

data 3

ed 1

ed 2

ed3

data 2

e Problem: Most computers support a large logical-address space (232 to 264). In these

systems, the page-table itself becomes excessively large.

e Solution: Divide the page-table into smaller pieces.

Two Level Paging Algorithm:

e The page-table itself is also paged.

36 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

e This is also known as a forward-mapped page-table because address translationworks
from the outer page-table inwards.

(e}
L ——7
| 1 =

: g

- 100

500 N

=2 -
\ - / >

[100 500

- -

- - -
-
708 —t+—— | =

(d 708
\ = -
outer page [929 -

table - ™~ 209
900 />< =

page of 929

page table
-
page table H
memory

A two-level page-table scheme

For example:
Consider the system with a 32-bit logical-address space and a page-size of 4 KB. A logical-

address is divided into
e 20-bit page-number and
e 12-bit page-offset.
Since the page-table is paged, the page-number is further divided into
e 10-bit page-number and
e 10-bit page-offset.
Thus, a logical-address is as follows:

page number page offset
Py Ps d
12 10 10

e Wwhere p1 is an index into the outer page table, and p2 is the displacement within the page

of the inner page table.
The address-translation method for this architecture is shown in below figure. Because address
translation works from the outer page table inward, this scheme is also known as a forward-

mapped page table.

37 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

logical address

P [po | d |

P1{

P2

Y

outer page d d
table {

page of
page table

Address translation for a two-level 32-bit paging architecture

2) Hashed Page Tables

e This approach is used for handling address spaces larger than 32 bits.

e The hash-value is the virtual page-number.
e Each entry in the hash-table contains a linked-list of elements that hash to the same
location (to handle collisions).
e Each element consists of 3 fields:
» Virtual page-number
» Value of the mapped page-frame and
» Pointer to the next element in the linked-list.

The algorithm works as follows:

physical
logical address address

[r [d]

physical
fu:ac?irc]m < |Q|S|’T|_T|p| r|ilT’" memory

hash table

Hashed page-table

38 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

The virtual page-number is hashed into the hash-table.

The virtual page-number is compared with the first element in the linked-list.

If there is a match, the corresponding page-frame (field 2) is used to form the desired
physical-address.

If there is no match, subsequent entries in the linked-list are searched for a matching

virtual page-number.

3) Inverted Page Tables

Has one entry for each real page of memory.

Each entry consists of virtual-address of the page stored in that real memory-
location and information about the process that owns the page.

Each virtual-address consists of a triplet <process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number>

logical .
address physical
address

hysical
N R e e

memory
search l }i

pid [p

page table

Inverted page-table

The algorithm works as follows:

1.

When a memory-reference occurs, part of the virtual-address, consisting of
<process-id, page-number>, is presented to the memory subsystem.

The inverted page-table is then searched for a match.

If a match is found, at entry i-then the physical-address <i, offset> is generated.

If no match is found, then an illegal address access has been attempted.

39 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

Advantage: Decreases memory needed to store each page-table

Disadvantages:

1. Increases amount of time needed to search table when a page reference occurs.
2. Difficulty implementing shared-memory

Segmentation

Basic Method of Segmentation

e This isa memory-management scheme that supports user-view of memory.

e Alogical-address space is a collection of segments.

e Each segment has a name and a length.

e The addresses specify both segment-name and offset within the segment.

e Normally, the user-program is compiled, and the compiler automatically constructs

segments reflecting the input program.

subroutina stack

symbol
table

Sgrt
main
\ program

logical address

Programmer’s view of a program

Hardware support for Segmentation

e Segment-table maps 2 dimensional user-defined addresses into one-dimensional
physical addresses.
¢ In the segment-table, each entry has following 2 fields:
1. Segment-base contains starting physical-address where the segment residesin
memory.
2. Segment-limit specifies the length of the segment

e A logical-address consists of 2 parts:

40 | Dept. of CSE (AIML), MCE, Hassan

Operating Systems | 24A1303

1. Segment-number(s) is used as an index to the segment-table

2. Offset(d) must be between 0 and the segment-limit.
If offset is not between 0 & segment-limit, then we trap to the OS (logical-addressing
attempt beyond end of segment).
If offset is legal, then it is added to the segment-base to produce the physical-

memory address.
=
———— S+
—{limit_|pase }—
segment
table
CPU |»| S
Y ¥
—p<< yes +
no
v
trap: addressing error physical memory

Segmentation hardware

41 | Dept. of CSE (AIML), MCE, Hassan

